Generation of Functional RNAs from Inactive Oligonucleotide Complexes by Non-enzymatic Primer Extension
نویسندگان
چکیده
The earliest genomic RNAs had to be short enough for efficient replication, while simultaneously serving as unfolded templates and effective ribozymes. A partial solution to this paradox may lie in the fact that many functional RNAs can self-assemble from multiple fragments. Therefore, in early evolution, genomic RNA fragments could have been significantly shorter than unimolecular functional RNAs. Here, we show that unstable, nonfunctional complexes assembled from even shorter 3'-truncated oligonucleotides can be stabilized and gain function via non-enzymatic primer extension. Such short RNAs could act as good templates due to their minimal length and complex-forming capacity, while their minimal length would facilitate replication by relatively inefficient polymerization reactions. These RNAs could also assemble into nascent functional RNAs and undergo conversion to catalytically active forms, by the same polymerization chemistry used for replication that generated the original short RNAs. Such phenomena could have substantially relaxed requirements for copying efficiency in early nonenzymatic replication systems.
منابع مشابه
Enzymatic combinatorial nucleoside deletion scanning mutagenesis of functional RNA.
We describe a general and simple method to identify catalytically and structurally important nucleotides in functional RNAs. Our approach is based on statistical replacement of each nucleoside with a non-nucleosidic spacer (C3 linker, Δ), followed by separation of active library variants and readout of interference effects by analysis of enzymatic primer extension reactions.
متن کاملMicrofluidic-based enzymatic on-chip labeling of miRNAs.
Small noncoding RNAs (sncRNAs) have moved from oddity to recognized important players in gene regulation. Next generation sequencing approaches discover more and more such molecules from a variety of different groups, but flexible tools translating this sequence information into affordable high-throughput assays are missing. Here we describe a microfluidic primer extension assay (MPEA) for the ...
متن کاملHybridization and enzymatic extension of au nanoparticle-bound oligonucleotides.
We have investigated the impact of steric effects on the hybridization and enzymatic extension of oligonucleotides bound to 12-nm colloidal Au particles. In these experiments, a nanoparticle-bound 12-mer sequence is hybridized either to its solution phase 12-mer complement or to an 88-mer template sequence. The particle-bound oligonucleotide serves as a primer for enzymatic extension reactions,...
متن کاملDNAzyme molecular beacon probes for target-induced signal-amplifying colorimetric detection of nucleic acids.
A novel DNAzyme molecular beacon (DNAzymeMB) strategy was developed for target-induced signal-amplifying colorimetric detection of target nucleic acids. The DNAzymeMB, which exhibits peroxidase activity in its free hairpin structure, was engineered to form a catalytically inactive hybrid through hybridization with a blocker DNA. The presence of target DNA leads to dissociation of the DNAzymeMB ...
متن کاملImproved efficiency for primer extension by using a long, highly-labeled primer generated from immobilized single-stranded DNA templates.
Primer extension is one of the most common methods used to measure the amount and size of RNAs. We demonstrate that the sensitivity and the specificity of this method are improved considerably by using a highly-labeled single-stranded DNA generated from a biotinylated single-stranded DNA template, as a long specific primer in the reverse transcription reaction. This new approach allows the dete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 137 شماره
صفحات -
تاریخ انتشار 2015